SOME METHODS FOR GENERATING PROXIMTIES BY RELATIONS

Rodyna A. Hosny ${ }^{(a ; b)}$, Amira Ishan ${ }^{(a)}$, Kj. M. Abu Alnaja ${ }^{(a)}$
(a) Department of Mathematics and Statistics,
Faculty of Science, Taif University, PO 21974, Taif, KSA
(b) Department of Mathematics, Faculty of Science,
Zagazig University, PO 44519, Zagazig, Egypt

Abstract

In the current paper, a procedure for obtaining clopen topology from a general binary relations R via proximity structures was obtained. A comparison between the properties of approximation with respect to the topologies generated by relation and their corresponding approximation with respect to proximity structures were carried out.

Index Terms - General binary relation, Proximity space, Neighborhoods, Approximation spaces.
Subject Classification: 54C05.

1 Introduction

Relations are used in the construction of topological structures in many fields such as dynamics [7], rough set theory and approximation space $[2,14,15]$, digital topology [19, 20], biochemistry [22] and biology [23]. In principal, topology is a branch of mathematics, whose concepts exist not only in almost all branches of mathematics, but also in many real life applications. It should be noted that the generation of topology by relations and the representation of topological concepts via relations will narrow the gap between topology and its applications. Recently the concept of rough set theory RST ($[2,9,10,13,14,15,17,24]$) has a wide range of both applications and theoretical aspects directed attention to the importance of topology in applications. It is well known that this theory is based on the properties of the special type of topological structures, clopen topology. This connection between topology and rough set theory helped topologist to look a topological structures as generalized mathematical models to represent information. In past several years of $21^{\text {st }}$, rough set theory has developed significantly due to its wide applications. Various generalized rough set models have been established and their properties and structures have been investigated intensively. One of the interesting research topics in RST is to modify this theory via topology. To the best of our knowledge, proximity structures did not take the suitable interest in generalizing rough set models. The purpose of this work is to introduce proximity structures to approximation spaces which is the basic concept in RST. The paper is organized as follow, in section 2 we gave account basic definition and preliminaries, the purpose of section 3 is to initiate proximity structures and give Examples. Also, properties and characterization of the two constructed proximities are given.

2 Preliminaries

Throughout this paper, by $P(X)$ we mean the power set of X. The following are cited from [3, 11, 12]

Definition 2.1 For every subset A and B of X and $x \in X$. A relation $\delta \subseteq X \times P(X)$ is said to be a K-proximity on a given set X if it satisfies the following conditions (where δ^{-}means negation of δ):
(P1) $x \delta(\mathrm{~A} \cup \mathrm{~B}) \leftrightarrow x \delta \mathrm{~A}$ or $x \delta B$.
(P2) $x \delta^{-} \varnothing \quad \forall x \in X$.
(P3) $x \in A \rightarrow x \delta A$.
(P4) $x \delta^{-} A \rightarrow \exists E \subseteq X$ s.t. $x \delta^{-} E$ and y $\delta^{-} A \forall y \in(X-E)$.

A relation δ is said to be separated [10], if it satisfies:
(P5) $x \delta y \rightarrow x=y$.

Definition 2.2 Let (X, δ) be a K-proximity space and $A \subseteq X$ then:
(i) A is τ_{δ} open, if $\left(x \delta^{-} \mathrm{A}^{\mathrm{c}} \forall \mathrm{x} \in \mathrm{A}\right)$.
(ii) A is τ_{δ} closed, if $(x \delta A \rightarrow x \in A)$.

Definition 2.3 Let (X, δ) be a K-proximity space, then a subset B of X is a δ-neighborhood of x (in symbols $x<B)$, if $x \delta^{-}(X-B)$.

The family $N(\delta,\{x\})=\{B \subseteq X: x<B\}$ is a δ-nbd. system of x. Also, $N(\delta, x) \subseteq N\left(\tau_{\delta}, x\right)$ where $N\left(\tau_{\delta}, x\right)$ is the nbd. system of x w.r.t. τ_{δ}.

Lemma 2.4 Let (X, δ) be a K-proximity space and let A and B be subsets of X, then:
(i) $x \delta A, A \subseteq B \rightarrow x \delta B$.
(ii) The operator $\mathrm{Cl}_{\delta}(\mathrm{A})=\{\mathrm{x} \in \mathrm{X}: \mathrm{x} \delta \mathrm{A}\}$ is a Kuratowski closure operator which produce the topology τ_{δ} generated by δ.
(iii) $\{\mathrm{x}\} \delta \mathrm{A} \rightarrow \mathrm{Cl}_{\delta}\{\mathrm{x}\} \delta \mathrm{Cl}_{\delta} \mathrm{A}$, where the closure is taken w.r.t. τ_{δ}.

3 Proximity structures on generalized approxIMATION SPACES

The purpose of this article is to introduce proximity structures using general binary relation in approximation space (X, R).

Let X be a non-empty finite set called the universe. A relation R from a universe X to a universe X (relation on X) is a subset of $X \times X$, i.e., $R \subseteq X \times X$. The formula (x, y) $\in R$ is abbreviated as $x R y$ which means that x related to y via relation R. The pair (X, R) is called a generalized approximation space.

Definition 3.1 [4] If R is a relation on X, then the right neighborhood (aftersets) of $x \in X$ is $x R$, where $x R=\{y \in X: x R y\}$ and the left neighborhood (forsets) of $x \in X$ is $R x$, where $R x=\{y \in X: y R x\}$.

Definition 3.2 [1] For any binary relation R on X, then $<x>R=\cap\{y R: x \in y R\}$ and $R<x>=\cap\{R y: x \in R y\}$.

Lemma 3.3 [1] For any binary relation R on X if $x \in\langle y>R$, then $<x>R \subseteq<y>R$.

Lemma 3.4. For a symmetric and transitive relation R on X, then $y R \subseteq<y>R$.

Proof Let $x \notin<y>R$, then $\exists z \in X$ s.t. $x \notin z R$ and $y \in z R$. Since R is symmetric and transitive relation on X, then $x \notin y R$.

Corollary 3.5 For an equivalence relation R on X, then $\forall x \in X$; $x R=\langle x\rangle R$.

Definition 3.6 [1] Let R be a reflexive relation on X, then the class $\{<x>R: x \in X\}$ (resp., $\{R<x>: x \in X\}$) is a base for the topology on X.

Definition 3.7 Let (X, R) be an approximation space. Then, $\forall A \subseteq X$, the operations $R_{1} A=\{x \in X:<x>R \cap A \neq \varnothing\}$ and $R_{2} A=\{x \in X: R<x>\cap A \neq \varnothing\}$.

The proof of the following lemmas are obvious and omitted.
Lemma 3.8 For any binary relation R on X we have, $x \in R_{1}\{y\} \leftrightarrow$ $y \in\left\langle x>R\right.$ (resp., $x \in R_{2}\{y\} \leftrightarrow y \in R<x>$).

Lemma 3.9 Let R be any binary relation on X. Then, $\forall A \subseteq X$, $R_{1} A=\cup_{x \in A} R_{1}\{x\}$ (resp., $R_{2} A=\cup_{x \in A} R_{2}\{x\}$).

The following theorem indicates some properties of $R_{1} A$ and $\mathrm{R}_{2} \mathrm{~A}$ for any $\mathrm{A} \subseteq \mathrm{X}$.

Theorem 3.10 In an approximation space (X, R), let A and B be two subsets of X. Then, the following properties hold:

1) $R_{1} \varnothing=R_{2} \varnothing=\varnothing$.
2) If R is reflexive, then $R_{1} X=R_{2} X=X$.
3) If $A \subseteq B$, then $R_{1} A \subseteq R_{1} B$ and $R_{2} A \subseteq R_{2} B$.
4) $R_{1}(A \cup B)=R_{1} A \cup R_{1} B$ and $R_{2}(A \cup B)=R_{2} A \cup R_{2} B$.
5) $R_{1}(A \cap B) \subseteq R_{1} A \cap R_{1} B$ and $R_{2}(A \cap B) \subseteq R_{2} A \cap R_{2} B$.
6) If R is reflexive, then $A \subseteq R_{1} A$ and $A \subseteq R_{2} A$.
7) If R is reflexive, then $R_{1} R_{1} A=R_{1} A$ and $R_{2} R_{2} A=R_{2} A$.
8) If R is symmetric, then $R_{1} A=R_{2} A$.

Proof We shall prove only (7) for R_{1} and other statements are obvious from Definition of R_{1} and R_{2}. Since R_{1} is reflexive and by using (2), then $R_{1} A \subseteq R_{1} R_{1} A$. The other side,

$$
\begin{aligned}
x \in R_{1} R_{1} A & \rightarrow<x>R \cap R_{1} A \neq \varnothing \\
& \rightarrow \exists y \in<x>R \text { such that } y \in R_{1} A . \\
& \rightarrow<y>R \subseteq<x>R \text { and }<y>R \cap A \neq \varnothing \\
& \rightarrow<x>R \cap A \neq \varnothing \rightarrow x \in R_{1} A .
\end{aligned}
$$

Definition 3.11 Let X be any set and $R \subseteq X \times X$ be any binary relation on X. The relation R gives rise to a closure operation $\mathrm{Cl}_{\delta 1} \mathrm{~A}$ and $\mathrm{Cl}_{\delta 2} \mathrm{~A}$ on X as follows: $\mathrm{Cl}_{\delta 1} \mathrm{~A}=\mathrm{A} \cup \mathrm{R}_{1} \mathrm{~A}$ (resp., $\mathrm{Cl}_{{ }_{\delta 2}} \mathrm{~A}=\mathrm{A} \cup \mathrm{R}_{2} \mathrm{~A}$).

Definition 3.12 Let X be any set and $R \subseteq X \times X$ be a reflexive relation on X. The relation R gives rise to a closure operation $\mathrm{Cl}_{\delta 1} \mathrm{~A}$ and $\mathrm{Cl}_{\delta 2} \mathrm{~A}$ on X as follows: $\mathrm{Cl}_{\delta 1} \mathrm{~A}=\mathrm{R}_{1} \mathrm{~A}$ (resp., $\mathrm{Cl}_{\delta 2} \mathrm{~A}=$ $\mathrm{R}_{2} \mathrm{~A}$).

Definition 3.13 Let $X \neq \varnothing$; and $A \subseteq X$, the relations δ_{1} and δ_{2} on $P(X)$ generated from R_{1} and R_{2} respectively are defined as follows, $x \delta_{1} \mathrm{~A} \leftrightarrow \mathrm{x} \in \mathrm{Cl}_{\delta 1} \mathrm{~A}$ (resp., $\mathrm{x} \delta_{2} \mathrm{~A} \leftrightarrow \mathrm{x} \in \mathrm{Cl}_{\delta 2} \mathrm{~A}$).

Lemma 3.14 Let X be any set and $R \subseteq X \times X$ be any binary relation on X. If $<x>R=\varnothing$ then $\{x\}$ is $\tau_{\delta 1}$-closed (resp., If $R<x>=\varnothing$, then $\{x\}$ is $\tau_{\delta 2}$-closed).

Proof Obvious.

In the following theorem, some properties of δ_{1} and δ_{2} which generated from R_{1} and R_{2} are obtained.

Theorem 3.15 Let $X \neq \varnothing$; R be a binary relation on X and δ_{1} and δ_{2} generated from R_{1} and R_{2} respectively, then :
i) δ_{1} and δ_{2} satisfy P1 and P2 axioms of Definition 2.1. for any relation R .
ii) δ_{1} and δ_{2} satisfy P1, P2 and P3 axioms of Definition 2.1. for a reflexive relation R.
iii) δ_{1} and δ_{2} are K-proximities on X for equivalence relation R.

Proof i) From (1) and (4) in Theorem 3.10., then δ_{1} and δ_{2} satisfy P1 and P2 axioms of Definition 2.1.
ii) From (1), (4) and (6) in Theorem 3.10., then δ_{1} and δ_{2} satisfy P1, P2 and P3 axioms of Definition 2.1.
iii) Obvious in view of Theorem 3.10. and Lemmas 3.3., 3.8. We shall prove only δ_{1} is K-proximity on X. Since R is reflexive, then the axioms P1, P2 and P3 of Definition 2.1. are hold. Let $x \delta_{1}{ }^{-} \mathrm{A}$, then $\mathrm{x} \notin \mathrm{R}_{1} \mathrm{~A}$. By using Corollary 3.5., Def. 3.7. and (6), (7) of Theorem 3.10., then $x \notin A$ and $x \notin R_{1} R_{1} A$. Hence $<x>R \cap R_{1} A=\varnothing$. Suppose $E=R_{1} A$, then $\forall y \in x R ; y \notin E$ i.e. $y \in(X-E)$. Since R is symmetric, then $x \in y R$ and $y R \cap A=\varnothing$. This implies that $x \notin R_{1} E$ and $y \notin R_{1} A \forall y \in(X-E)$. Consequently, $x \delta_{1}{ }^{-} E$ and $\mathrm{y} \delta_{1}{ }^{-} \mathrm{A} \forall \mathrm{y} \in(\mathrm{X}-\mathrm{E})$.

Theorem 3.16 Let R be a binary relation on X. If $\langle x\rangle R=\varnothing$ $\forall \mathrm{x} \in \mathrm{X}$, then δ_{1} and δ_{2} are separated proximity.

Proof Obvious in view of Lemma 3.14.

In the following, we use the deviation between $R_{1} A, R_{2} A$ to construct classifications for $\mathrm{P}(\mathrm{X})$.

Definition 3.17 Let (X, R) be an approximation space. If $A \subseteq X$, then:
i) A is R-certain set if $R_{1} A=A=R_{2} A$.
ii) A is R-right certain and left uncertain set if $A=R_{1} A, A \neq R_{2} A$.
iii) A is R-left certain and right uncertain set if $A \neq R_{1} A, A=R_{2} A$.
iv) A is R-uncertain set if $A \neq R_{1} A, A \neq R_{2} A$.

Definition 3.18 [1] If τ is the topology on a finite set X and the class $\tau^{c}=\{(X-G): G \in \tau\}$ is also the topology on X, then τ^{c} is the dual of τ.

Definition 3.19 [16] The proximities δ_{1} and δ_{2} on the power set of X are dual iff $A \delta_{2} B$ is equivalent to $A \delta_{1}^{-}(X-B), \forall A, B \subseteq X$.

Theorem 3.20 If R be a symmetric relation on a non-empty set X, then $\delta_{1}=\delta_{2}, \tau_{\delta 1}=\tau_{\delta 2}$ and $\tau_{1}=\tau_{2}$.

The following Examples illustrate the form and relations of δ_{1} and δ_{2} and summarize these results in tables 1-8. Also, we shall illustrate the form and relations of $\tau_{\delta 1}$ and $\tau_{\delta 2}$ which generated from δ_{1} and δ_{2}.

Example 1 Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{R}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{d}),(\mathrm{c}, \mathrm{d})$, $(d, a)\}$ be any relation on X where $a R=\{a, b\}, b R=c R=\{d\}, d R=\{a\}$ and $R a=\{a, d\}, R b=\{a\}, R c=\varnothing, R d=\{b, c\}$. Also,
$<a>R=\{a\},R=\{a, b\},<c>R=\varnothing,<d>R=\{d\}$ and $R<a>=\{a\}$, $R=R<c>=\{b, c\}, R<d>=\{a, d\}$.

Table 1

	$\mathfrak{R}_{1} \mathbf{A}$	$\mathfrak{R}_{2} \mathbf{A}$
$\mathrm{A}_{1}=\{\mathrm{a}\}$	$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{a}, \mathrm{d}\}$
$\mathrm{A}_{2}=\{\mathrm{b}\}$	\{b	\{b, c $\}$
$\mathrm{A}_{3}=\{\mathrm{c}\}$	\varnothing	$\{\mathrm{b}, \mathrm{c}\}$
$\mathrm{A}_{4}=\{\mathrm{d}\}$	\{d\}	\{d\}
$\mathrm{A}_{5}=\{\mathrm{a}, \mathrm{b}\}$	\{a, b\}	X
$\mathbf{A}_{6}=\{\mathrm{a}, \mathrm{c}\}$	$\{\mathrm{a}, \mathrm{b}\}$	X
$\mathrm{A}_{7}=\{\mathrm{a}, \mathrm{d}\}$	$\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$	\{a, d\}
$\mathrm{A}_{8}=\{\mathrm{b}, \mathrm{c}\}$	\{b\}	$\{\mathrm{b}, \mathrm{c}\}$
$\mathrm{A}_{9}=\{\mathrm{b}, \mathrm{d}\}$	$\{\mathrm{b}, \mathrm{d}\}$	$\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$\mathrm{A}_{10}=\{\mathrm{c}, \mathrm{d}\}$	\{d\}	$\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$\mathrm{A}_{11}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$	$\{\mathrm{a}, \mathrm{b}\}$	X
$A_{12}=\{a, b, d\}$	$\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$	X
$\mathrm{A}_{13}=\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}$	$\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$	X
$\mathrm{A}_{14}=\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$	$\{\mathrm{b}, \mathrm{d}\}$	$\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$\mathrm{A}_{15}=\varnothing$	\varnothing	\varnothing
$\mathrm{A}_{16}=\mathrm{X}$	$\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$	X

$X,\{a\},\{c\},\{d\},\{a ; b\},\{a ; c\},\{a ; d\},\{c ; d\},\{a ; c ; d\},\{a ; b ; c\},\{a ; b ;$ $\mathrm{d}\}\}$ which is generated from δ_{1} and the topology $\tau_{\delta 2}=\{\varnothing, X,\{a\}$, $\{b ; c\},\{a ; d\},\{a ; b ; c\}\}$ which is generated from δ_{2}. The topologies τ_{1} and τ_{2} generated from the relation $R, \tau_{1}=\{\varnothing, X,\{a ; b\},\{a ;$ $d\},\{d\},\{a\},\{a ; b ; d\}\} \subseteq \tau_{\delta 1}$ and $\tau_{2}=\tau_{\delta 2}$.

Corollary 3.21 It is clear that from Example $1 \mathrm{~A}_{4}, \mathrm{~A}_{15}$ are Rcertain set. $\mathrm{A}_{7}, \mathrm{~A}_{8}, \mathrm{~A}_{14}, \mathrm{~A}_{16}$ are R-left certain and right uncertain set. $A_{2}, A_{5}, A_{9}, A_{12}$ are R-right certain and left uncertain set but others are R-uncertain sets.

Corollary 3.22 It is clear that from Example $1 \delta_{1}$ is not dual δ_{2} and $\tau_{\delta 1}$ is not the dual $\tau_{\delta 2}$. Generally for any binary relation R, then τ_{1} is not the dual of τ_{2}.

Now we introduce some Examples about special cases of the relation R to study the duality between proximities δ_{1} and δ_{2} the duality between topologies τ_{1} and τ_{2}.

Example 2 Let $X=\{a, b, c, d\}$, and R be a reflexive on $X, R=\{(a$, a), (b,b), (c, c), (d, d), (a, b), (b, d), (c, a)\} where $a R=\{a, b\}$, $b R=\{b, d\}, c R=\{a, c\}, d R=\{d\}$ and $R a=\{a, c\}, R b=\{a, b\}, R c=\{c\}$, $R d=\{b, d\} .<a>R=\{a\},R=\{b\},<c>R=\{a, c\},<d>R=\{d\}$ and $R<a>=\{a\}, R=\{b\}, R<c>=\{c\}, R<d>=\{b, d\}$.

Table 2

	$\mathfrak{R}_{1} \mathbf{A}$	$\mathfrak{R}_{2} \mathbf{A}$
$\mathbf{A}_{1}=\{\mathbf{a}\}$	$\{\mathbf{a}, \mathbf{c}\}$	$\{\mathbf{a}\}$
$\mathbf{A}_{2}=\{\mathbf{b}\}$	$\{\mathbf{b}\}$	$\{\mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{3}=\{\mathbf{c}\}$	$\{\mathbf{c}\}$	$\{\mathbf{c}\}$
$\mathbf{A}_{4}=\{\mathbf{d}\}$	$\{\mathbf{d}\}$	$\{\mathbf{d}\}$
$\mathbf{A}_{\mathbf{5}}=\{\mathbf{a}, \mathbf{b}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{\mathbf{6}}=\{\mathbf{a}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{c}\}$
$\mathbf{A}_{7}=\{\mathbf{a}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{d}\}$
$\mathbf{A}_{8}=\{\mathbf{b}, \mathbf{c}\}$	$\{\mathbf{b}, \mathbf{c}\}$	$\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{9}=\{\mathbf{b}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{10}=\{\mathbf{c}, \mathbf{d}\}$	$\{\mathbf{c}, \mathbf{d}\}$	$\{\mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{11}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	\mathbf{X}
$\mathbf{A}_{12}=\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	\mathbf{X}	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{13}=\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{14}=\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{15}=\varnothing$	\varnothing	\varnothing
$\mathbf{A}_{16}=\mathbf{X}$	\mathbf{X}	\mathbf{X}

The form of proximity relations δ_{1} and δ_{2} are obtained from the table 2 and Definition 3.13. It is clear that the topology $\tau_{\delta 1}$ $=\{\varnothing, X,\{d\},\{a\},\{b\},\{b ; d\},\{a ; b\},\{a ; d\},\{a ; c\},\{a ; b ; c\},\{a ; b ; d\}$, $\{a ; c ; d\}\}$ generated by δ_{1} and the topology $\tau_{\delta 2}=\{\varnothing, X,\{c\},\{a\}$, $\{b\},\{b ; d\},\{a ; b\},\{b ; c\},\{a ; c\},\{a ; b ; c\},\{a ; b ; d\},\{b ; c ; d\}\}$ which is generated from δ_{2}. The topologies τ_{1} and τ_{2} generated from the relation $R, \tau_{1}=\tau_{\delta 1}$ and $\tau_{2}=\tau_{\delta 2}$.

The form of proximity relations δ_{1} and δ_{2} are obtained from the table 1 and Definition 3.13. It is clear that the topology $\tau_{\delta 1}=\{\varnothing$,

Corollary 3.23 It is clear that from Example $2 \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{6}, \mathrm{~A}_{9}$, $\mathrm{A}_{10}, \mathrm{~A}_{13}, \mathrm{~A}_{14}, \mathrm{~A}_{15}$ and A_{16} are R-certain sets. $\mathrm{A}_{1}, \mathrm{~A}_{7}$ and A_{12} are R-left certain and right uncertain sets. $\mathrm{A}_{2}, \mathrm{~A}_{8}$ and A_{11} are Rright certain and left uncertain sets but others are R-uncertain sets.

Example 3 Let $X=\{a, b, c, d\}$, and R be a symmetric on $X, R=\{(a$, a), (b, b), (a, b), (b, a), (c, d), (d, c), (a, c), (c, a)\} where $a R=R a=\{a, b, c\}, b R=R b=\{b, a\}, c R=R c=\{a, d\}, d R=R d=\{c\}$. $\langle a>R=R<a>=\{a\},R=R=\{a, b\},<c>R=R<c>=\{c\}$, $<d>R=R<d>=\{a, d\}$.

Table 3

	$\Re_{1} \mathbf{A}$	$\mathfrak{R}_{2} \mathbf{A}$
$\mathbf{A}_{\mathbf{1}}=\{\mathbf{a}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{\mathbf{2}}=\{\mathbf{b}\}$	$\{\mathbf{b}\}$	$\{\mathbf{b}\}$
$\mathbf{A}_{3}=\{\mathbf{c}\}$	$\{\mathbf{c}\}$	$\{\mathbf{c}\}$
$\mathbf{A}_{4}=\{\mathbf{d}\}$	$\{\mathbf{d}\}$	$\{\mathbf{d}\}$
$\mathbf{A}_{5}=\{\mathbf{a}, \mathbf{b}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{6}=\{\mathbf{a}, \mathbf{c}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{7}=\{\mathbf{a}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{8}=\{\mathbf{b}, \mathbf{c}\}$	$\{\mathbf{b}, \mathbf{c}\}$	$\{\mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{9}=\{\mathbf{b}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{10}=\{\mathbf{c}, \mathbf{d}\}$	$\{\mathbf{c}, \mathbf{d}\}$	$\{\mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{11}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{12}=\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{\mathbf{1 3}}=\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{14}=\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{15}=\varnothing$	\varnothing	\varnothing
$\mathbf{A}_{16}=\mathbf{X}$	\mathbf{X}	\mathbf{X}

The form of proximity relations δ_{1} and δ_{2} are obtained from the table 3 and Definition 3.13. $\tau_{\delta 1}=\tau_{\delta 2}=\{\varnothing, X,\{a ; b\},\{a ; d\},\{a ; c\}$, $\{c\},\{a\},\{a ; b ; d\},\{a ; b ; c\},\{a ; c ; d\}\}$. The topologies τ_{1} and τ_{2} generated from the relation $R, \tau_{\delta 1}=\tau_{\delta 2}=\tau_{1}=\tau_{2}$.

Corollary 3.24 It is clear that from Example 3 the topology $\tau_{\delta 1}=\tau_{\delta 2}$ generated by δ_{1} and δ_{2} respectively, $\tau_{\delta 1}$ is the dual $\tau_{\delta 2}$

Corollary 3.25 It is clear that from Example $3 \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{8}$, $\mathrm{A}_{9}, \mathrm{~A}_{10}, \mathrm{~A}_{12}, \mathrm{~A}_{14}, \mathrm{~A}_{15}$ and A_{16} are R-certain sets but others are Runcertain sets.

Example 4 Let $X=\{a, b, c, d\}$, and R be a transitive on $X, R=\{(a$, a), (a,b), (b, a), (b, b), (c, d), (d, a), (c, a), (d, b), (c, b)\} where $a R=b R=d R=\{a, b\}, c R=\{a, b, d\}$ and $R a=R b=X, R c=\varnothing, R d=\{c\}$. $<a>R=R=\{a, b\},<c>R=\varnothing,<d>R=\{a, b, d\}$ and $R<a>=R=R<d>=X, R<c>=\{c\}$.

The form of proximity relations δ_{1} and δ_{2} are obtained from the table 4 and Definition 3.13. $\tau_{\delta 1}=\{\varnothing, X,\{a ; b\},\{c\},\{a ; b ; d\},\{a ; b ;$ $c\}\}$ and $\tau_{\delta 2}=\{\varnothing, X,\{c\}\}$. The topologies τ_{1} and τ_{2} generated from the relation R are $\tau_{1}=\{\varnothing ; X ;\{a ; b\} ;\{a ; b ; d\}\} \subseteq \tau_{\delta 1}$ and $\tau_{2}=\tau_{\delta 2}$.

Table 4

	$\mathfrak{R}_{1} \mathbf{A}$	$\mathfrak{R}_{2} \mathbf{A}$
$\mathbf{A}_{\mathbf{1}}=\{\mathbf{a}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{\mathbf{2}}=\{\mathbf{b}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{3}=\{\mathbf{c}\}$	\varnothing	\mathbf{X}
$\mathbf{A}_{4}=\{\mathbf{d}\}$	$\{\mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{\mathbf{5}}=\{\mathbf{a}, \mathbf{b}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{6}=\{\mathbf{a}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	\mathbf{X}
$\mathbf{A}_{7}=\{\mathbf{a}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{8}=\{\mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	\mathbf{X}
$\mathbf{A}_{9}=\{\mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{10}=\{\mathbf{c}, \mathbf{d}\}$	$\{\mathbf{d}\}$	\mathbf{X}
$\mathbf{A}_{11}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	\mathbf{X}
$\mathbf{A}_{12}=\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{13}=\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	\mathbf{X}
$\mathbf{A}_{14}=\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{15}=\varnothing$	\varnothing	\varnothing
$\mathbf{A}_{16}=\mathbf{X}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	\mathbf{X}

Corollary 3.26 It is clear that from Example $4 \mathrm{~A}_{12}$ and A_{15} are R-certain set. A_{16} is R-left certain and right uncertain set. A_{4} is R-right certain and left uncertain set but others are R-uncertain sets.

Corollary 3.27 It is clear that from Example $4 \tau_{\delta 2} \subseteq \tau_{\delta 1}$ i.e. $\tau_{\delta 1}$ is not the dual $\tau_{\delta 2}$.

Example 5 Let $X=\{a, b, c, d\}$, and R be a reflexive and transitive on $X, R=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, a),(a, c),(c, d),(a$, d), $(b, c),(b, d)\}$ where $a R=b R=X, c R=\{c, d\}, d R=\{d\}$ and
$R a=R b=\{a, b\}, R c=\{a, b, c\}, R d=X .<a>R=R=X,<c>R=\{c, d\}$, $<d>R=\{d\}$ and $R<a>=R=\{a, b\}, R<c>=\{a, b, c\}, R<d>=X$.

The form of proximity relations δ_{1} and δ_{2} are obtained from the table 5 and Definition 3.13. The topology $\tau_{\delta 1}=\{\varnothing, X,\{d\},\{c ;$ $d\}\}$ generated by δ_{1} and the topology $\tau_{\delta 2}=\{\varnothing, X,\{a ; b\},\{a ; b ; c\}\}$ generated by δ_{2}. The topologies τ_{1} and τ_{2} generated from the relation R, are $\tau_{1}=\tau_{\delta 1}$ and $\tau_{2}=\tau_{\delta 2}$. Also, we have $\tau_{1}=\tau^{c_{2}}$.

Corollary 3.28 It is clear that from Example 5. A_{15} and A_{16} are R-certain sets. A_{4} and A_{10} are R -left certain and right uncertain sets. A_{5} and A_{11} are R -right certain and left uncertain sets but others are R -uncertain sets.

Corollary 3.29 It is clear that from Example 5 the union of $\tau_{\delta 1}$ and $\tau_{\delta 2}$ is a quasi discrete topological spaces (clopen topology).

Table 5

	$\mathfrak{R}_{1} \mathbf{A}$	$\mathfrak{R}_{2} \mathbf{A}$
$\mathbf{A}_{\mathbf{1}}=\{\mathbf{a}\}$	$\{\mathbf{a}, \mathbf{b}\}$	\mathbf{X}
$\mathbf{A}_{\mathbf{2}}=\{\mathbf{b}\}$	$\{\mathbf{a}, \mathbf{b}\}$	\mathbf{X}
$\mathbf{A}_{3}=\{\mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{4}=\{\mathbf{d}\}$	\mathbf{X}	$\{\mathbf{d}\}$
$\mathbf{A}_{\mathbf{5}}=\{\mathbf{a}, \mathbf{b}\}$	$\{\mathbf{a}, \mathbf{b}\}$	\mathbf{X}
$\mathbf{A}_{\mathbf{6}}=\{\mathbf{a}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	\mathbf{X}
$\mathbf{A}_{7}=\{\mathbf{a}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{\mathbf{A}}=\{\mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	\mathbf{X}
$\mathbf{A}_{\mathbf{A}}=\{\mathbf{b}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{\mathbf{1 0}}=\{\mathbf{c}, \mathbf{d}\}$	\mathbf{X}	$\{\mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{11}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	\mathbf{X}
$\mathbf{A}_{12}=\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{13}=\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{14}=\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{15}=\varnothing$	\varnothing	\varnothing
$\mathbf{A}_{16}=\mathbf{X}$	\mathbf{X}	\mathbf{X}

Example 6 Let $X=\{a, b, c, d\}$, and R be a symmetric and transitive on $X, R=\{(a, a),(b, b),(c, c),(a, b),(b, a),(b, c),(c, b),(a, c)$, (c, a) \} whereaR $=b R=c R=R a=R b=R c=\{a, b, c\}, d R=R d=\varnothing$. $<a>R=R<a>=R=R=<c>R=R<c>=\{a, b, c\}$, $<d>R=R<d>=\varnothing$.

Table 6

	$\Re_{1} \mathbf{A}$	$\Re_{2} \mathbf{A}$
$\mathbf{A}_{\mathbf{1}}=\{\mathbf{a}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{\mathbf{2}}=\{\mathbf{b}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{3}=\{\mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{4}=\{\mathbf{d}\}$	\varnothing	\varnothing
$\mathbf{A}_{5}=\{\mathbf{a}, \mathbf{b}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{6}=\{\mathbf{a}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{7}=\{\mathbf{a}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{8}=\{\mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{9}=\{\mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{10}=\{\mathbf{c}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{\mathbf{A}_{11}}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{12}=\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\left.\mathbf{A}_{13}=\mathbf{a}, \mathbf{c}, \mathbf{d}\right\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{14}=\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
$\mathbf{A}_{15}=\varnothing$	\varnothing	\varnothing
$\mathbf{A}_{16}=\mathbf{X}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$

The form of proximity relations δ_{1} and δ_{2} are obtained from the table 6 and Definition 3.13. The topologies $\tau_{\delta 1}=\tau_{\delta 2}=\{\varnothing, X$, $\{\mathrm{a} ; \mathrm{b} ; \mathrm{c}\},\{\mathrm{d}\}\}$ generated by δ_{1} and δ_{2}. The topologies τ_{1} and τ_{2} generated from the relation R, are $\tau_{1}=\tau_{2}=\{\varnothing, X,\{a ; b ; c\}\} \subseteq \tau_{\delta 1}$ $=\tau_{\delta 2}$.

Corollary 3.30 It is clear that from Example 6. A_{11} and A_{15} are R-certain sets, but others are R-uncertain sets.

Corollary 3.31 It is clear that from Example 6 the union of $\tau_{\delta 1}$ $=\tau_{\delta 2}$ is a quasi discrete topological space (clopen topology).

Example 7 Let $X=\{a, b, c, d\}$, and R be a reflexive and symmetric on $X, R=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, a),(a, c),(c, a)$, $(b, d),(d, b)\}$ where $a R=R a=\{a, b, c\}, b R=R b=\{a, b, d\}, c R=R c=$ $\{a, c\}, d R=R d=\{b, d\} .<a>R=R<a>=\{a\},R=R=\{b\}$, $<\mathrm{c}>\mathrm{R}=\mathrm{R}<\mathrm{c}>=\{\mathrm{a}, \mathrm{c}\},<\mathrm{d}>\mathrm{R}=\mathrm{R}<\mathrm{d}>=\{\mathrm{b}, \mathrm{d}\}$.

Table 7

	$\Re_{1} \mathbf{A}$	$\mathfrak{R}_{2} \mathbf{A}$
$\mathbf{A}_{\mathbf{1}}=\{\mathbf{a}\}$	$\{\mathbf{a}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{c}\}$
$\left.\mathbf{A}_{\mathbf{2}}=\mathbf{=} \mathbf{b}\right\}$	$\{\mathbf{b}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{\mathbf{3}}=\{\mathbf{c}\}$	$\{\mathbf{c}\}$	$\{\mathbf{c}\}$
$\mathbf{A}_{4}=\{\mathbf{d}\}$	$\{\mathbf{d}\}$	$\{\mathbf{d}\}$
$\mathbf{A}_{5}=\{\mathbf{a}, \mathbf{b}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{\mathbf{6}}=\{\mathbf{a}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{c}\}$	$\{\mathbf{a}, \mathbf{c}\}$
$\mathbf{A}_{7}=\{\mathbf{a}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{8}=\{\mathbf{b}, \mathbf{c}\}$	$\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{9}=\{\mathbf{b}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{d}\}$
$\mathbf{A}_{10}=\{\mathbf{c}, \mathbf{d}\}$	$\{\mathbf{c}, \mathbf{d}\}$	$\{\mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{10}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{12}=\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{13}=\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{14}=\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$	$\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$
$\mathbf{A}_{15}=\varnothing$	\varnothing	\varnothing
$\mathbf{A}_{16}=\mathbf{X}$	X	X

The form of proximity relations δ_{1} and δ_{2} are obtained from the table 7 and Definition 3.13. $\tau_{\delta 1}=\tau_{\delta 2}=\{\varnothing, X,\{a ; b ; d\},\{a ;$ $b ; c\},\{b ; d\},\{a ; b\},\{a ; c\},\{a\},\{b\}\}$. The topologies τ_{1} and τ_{2} generated from the relation R are $\tau_{2}=\tau_{1}=\tau_{\delta 2}=\tau_{\delta 1}$.

Corollary 3.32 It is clear that from Example $7 \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{6}, \mathrm{~A}_{9}$, $\mathrm{A}_{10}, \mathrm{~A}_{13}, \mathrm{~A}_{14}, \mathrm{~A}_{15}$ and A_{16} are R-certain sets, but others are Runcertain sets.

Example 8 Let $X=\{a, b, c, d\}$, and R be an equivalence relation on $X, R=\{(a, a),(b, b),(c, c),(d, d),(a, b),(b, a),(a, c),(c, a)$, $(\mathrm{a}, \mathrm{d}),(\mathrm{d}, \mathrm{a}),(\mathrm{b}, \mathrm{d}),(\mathrm{b}, \mathrm{c}),(\mathrm{d}, \mathrm{b}),(\mathrm{c}, \mathrm{b}),(\mathrm{c}, \mathrm{d}),(\mathrm{d}, \mathrm{c})$ \} where $a R=b R=c R=d R=R a=R b=R c=R d=X$.
$<a>R=R<a>=R=R=<c>R=R<c>=<d>R=R<d>=X$.
The form of proximity relations δ_{1} and δ_{2} are obtained from the table 8 and Definition 3.13. The topology $\tau_{\delta 1}=\tau_{\delta 2}=\{\varnothing, X\}$ generated by δ_{1} and δ_{2}. The topologies τ_{1} and τ_{2} generated from the relation R defined in Example 8. are $\tau_{1}=\tau_{2}=\tau_{\delta 1}=\tau_{\delta 2}$.

Corollary 3.33 It is clear that from Example $8 \mathrm{~A}_{15}$ and A_{16} are R-certain sets but others are R-uncertain sets.

The topologies $\tau_{\delta 1}$ and $\tau_{\delta 2}$ generated by δ_{1} respectively δ_{2} are indiscrete.

Corollary 3.34 It is clear that from Example 8 the union of $\tau_{\delta 1}$ and $\tau_{\delta 2}$ is a quasi discrete topological space (clopen topology).

Corollary 3.35 It is clear that $\tau_{\delta 1}=\tau_{1}$ and $\tau_{\delta 2}=\tau_{2}$. Also, we have $\tau_{1}=\tau_{2}{ }^{\mathrm{c}}$.

Corollary 3.36 Obviously, if R is an equivalence relation, then $<x>R$ definition is equivalent to original Pawlak s Definition [13]

Table 8

	$\mathfrak{R}_{1} \mathbf{A}$	$\mathfrak{R}_{2} \mathbf{A}$
$\mathbf{A}_{\mathbf{1}}=\{\mathbf{a}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{\mathbf{2}}=\{\mathbf{b}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{3}=\{\mathbf{c}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{4}=\{\mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{5}=\{\mathbf{a}, \mathbf{b}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{6}=\{\mathbf{a}, \mathbf{c}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{7}=\{\mathbf{a}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{\mathbf{8}}=\{\mathbf{b}, \mathbf{c}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{9}=\{\mathbf{b}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{10}=\{\mathbf{c}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{11}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{12}=\{\mathbf{a}, \mathbf{b}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{13}=\{\mathbf{a}, \mathbf{c}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{14}=\{\mathbf{b}, \mathbf{c}, \mathbf{d}\}$	\mathbf{X}	\mathbf{X}
$\mathbf{A}_{15}=\varnothing$	\varnothing	\varnothing
$\mathbf{A}_{16}=\mathbf{X}$	\mathbf{X}	\mathbf{X}

References

[1]A. A. ALLAM, M. Y. BaKEIR AND E. A. Abo-Tabl, NEw APPROACH FOR CLOSURESPACES BY RELATIONS, ACTA MATHEMATICA ACADEMIAE PAEDAGOGICAE NYREGY-HZIENSIS22, 2006, 285-304.
[2]D. G. ChEn, W. X. ZHANG, ROUGH SETS AND TOPOLOGY SPACE, JournAL OFXI' AN JIAOTONG UNIVERSITY 35(12), 2001, 1313-1315 (IN CHINESE)
.[3] Chi Young Kim, Kill Nam Choi and Young Sun Shin., On the K-proximities., J. KYung oook. Math. 13 (1), 1973, 69-80.
[4] B. DE BaEtS and E. Kerre, A revision of Bandler-Kohout compositions ofreLATIONS, MATH. PANNONICA 4(1), 1993, 5978.
[5] V. A. Efremovich, The geometry of proximity, Mat. sb. 31, 1952, 189 -200.
[7] A. Galton. A generalized topological view of motion in discrete space. Theor. Comput. Sci. 305 2003, 111-134.
[8] James F. Peters, Piotr Wasilewski, Foundations of near sets, Information Sciences 179 2009, 3091-3109.
[9] M. Kondo, On the structure of generalized rough sets, Information Sci-ences 176 2006, 589-600.
[10] E. F. Lashin A. M. Kozae, A. A. Abo Khadra, T. Medhat, Rough set theory for topological spaces, International Journal of Approximate Rea- soning 40, 2005, , 35 43.
[11]M..W. Lodato, On topologically induced generalized proximity relationsII, Pacif. J. Mat. 17, 1966, 131-135.
[12] S. A. Naimpally and B. D. Warrack, Proximity spaces, Cambridge Tract., 1970.
[13] Z. Pawlak, Rough sets, International Journal of Information and Computer Sciences 11, 1982, 341-356.
[14] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer, Dordrecht, 1991.
[15]L..Polkowski, Rough Sets: Mathematical Foundations, Physica-Verlag ,Heidelberg, 2002.
[16] Pyung U. Park, Proximity spaces and compacti_cation, Bull. Korean Math. Soc. 13, 1976, 7-13.
[17] K. Qin, Z. Pei, On the topological properties of fuzzy rough sets, Fuzzy Sets and Systems 151, 2005, 601-613.
[18] A. Skowron, On the topology in information systems, Bulletin of the Polish Academy of Sciences - Mathematics 36, 1988, 477-480.
[19] J. Slapal, A jordan curve theorem with respect to certain closure operations on the digital plane, Electronic Notes in Theoretical Computer Science 46, 2001, 1-20.
[20] J. Slapal, Closure operations for digital topology, Theor. Comput. Sci.305, 2003, 457-471.
[21] Y. Smirnov, On Proximity spaces, Math.sb. 31(73)(in Russian), 1952, 543-574.
[22] B. M. R. Stadler and P. F. Stadler. Generalized topological space in evolutionary theory and combinatorial chemistry, J. Chem. Inf. Comput. Sci.
42, 2002, 577-585.
[23] B. M. R. Stadler, P. F. Stadler, M. Shpak, and G. P. Wagner. Recombination spaces, metrics, and pretopologies, Z. Phys. Chem. 216, 2002 155-173.
[24] A. Wiweger, On topological rough sets, Bulletin of the Polish Academy of Sciences - Mathematics 37, 1988, 51-62.
[6] M. S. Gagrat and S. A. Naimpally, Proximity approach to extension problems, Fund. Math. 1971, 63-76.

